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ABSTRACT

We describe work aimed at improving procedures for the estimation of non-tornadc extreme
windspeeds, regardlessof their direction, in regions not subjectedto hurricanes. Using the Genemlized
Pareto Distribution (GPD) approach and the ConditionalMean Exceedance(CME) estimation method,
we analyze 115 17-yearto 52-year sets of largest annual speedsand sets drawn from 48 15-yearto 26-
year records of maximum daily wind speeds. Based on this analysis we attempt an assessmentof the
widely held belief that the Gumbel distribution with sitedependent location and scale pammeters is a
universal model of extreme wind speeds. Some of our results suggest that the reverse Weibull
distribution is a more appropriate model. This would result in more reasonable estimates of wind-
induced failure probabilities and wind load factors than the corresponding estimates based on the
Gumbeldistribution. However, our assessment is so far only tentative owing to uncertainties inherent
in our results. Future work based on lower thresholds (larger &ta samples) and alternative estimation
methodsis planned.

1. INTRODUCTION

Until recently methods for the estimationof extremewind speedswere based solely on classical
extremevalue theory (Gumbel, 1958). Although such methodscan be used to obtain credibleestimates
of wind speds with relatively short mean return periods (50 years, say), questions remain as to their
capabilityto estimate distribution tails reliably.

In the last two decades a novel theory known as the ‘peaks over threshold’ approach was
developed that offers the potential for more reaiistic estimates of the tails. This would allow the
estimationby statistical methods of wind load factors, which have to date been specified in building
standardson the basis of engineeringguesses passed from one generation of standards to the next. This
paper is part of a long-term project aimed at improvingestimates of wind speed distribution tails and
wind load factors. The ‘peaks over threshold’ approach rests on the application of the Generalized
Pareto Distribution(GPD) to the excessof the extremevariatesover a !lxed threshold. For terminology
and notations, see Gross et al (1994).

Unlike classical methods, the ‘peaks over threshold’approach is applicable to the analysis of
the set amsisting of all data exceedinga sufficientlyhigh threshold. In addition, it is applicable to data
taken from sets of epochal extremes (i.e., maximaover samples of fixed size, such as largest annual
wind speeds). According to classical theory, in the asymptoticlimit a set of epochal extremes must fit
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the tail of one of the three extremevalue distributions. The epochalextremes that exceed a sufficiently
high threshold must therefore fit the GPD with c> O, Ml, or c cO.

We review briefly in Section 2 the expression for the GPD, the GPD-based estimator used in
this work, and the estimationwithin the frameworkof the ‘peaksover threshold’ approach of variates
with specified meanmum periods. In Section 3 we analyze 115 sets of observed largest annual wind
speeds taken from 17- to 52-year records. Section 4 is devoted to analyses of sets taken fkom4815-
to 26-year recordsof largest daily speeds. Section 5 presentsour conclusionsand outlines future work.

2. GENERALIZED PARETO DISTRIBUTION, AND DESCRIPTION OF ESTIMATORS
We reviewhere the expressionfor the GeneralizedPareto Distributionand the ConditionalMean

Exceedance (CME) method for estimating distribution parameters.

Generalized Pareto Dtibution (GPD)
The expression for the GPD is

G(y) = Prob[Y < y] = 1-{[1+(cy/a)]-l”} a>O, (1+(cy/a))>O (1)

Equation 1can be used to represent the conditionalcumulativedistribution of the excess Y= V-
u of the variate V over the threshold u, given V> u for u sufficiently larg~ c and a are distribution
me~rs. me m c >0, c=O and c <O correspond, respectively, to Fr4chet, Gumbel, and reverse
Weibull (right tail-limited)domainsof attraction. For c=O the expressionbetweenbraces is understood
in a limiting senseas the exponentialexp(-y/a) (Castillo, 1988, p. 215). For c <0 the shape parameter
of the cmresponding distribution is -y=-l/c (Smith, 1989).

Cumulative Mean Exceedance (cME) Method
The CME is the expectationof the amount by which a value exceeds a threshold u, conditional

on that threshold behg attained. If the exceedancedata are fitted by the GPD model and c< 1, u >0,
and a+uc >0, then the CME vs. u plot should follow a line with intercept a/(1-c) and slope c/(1-c)
(Davison et al, 1990). The linearity of the plot is an indicator of the appropriateness of the GPD
model. Estimates of c and a can be obtained from the slope and intercept of a straight line fit to the
CME VS. U @X.

Estimation of variates with specifmd mean return periods
The mean return period R, in y-, of a given wind speed is defined as the inverse of the

probability that that wind speed will be exceeded in any one year. In this section we give expressions
that allow the estimation from the GPD of the value of the variate cmesponding to probability 1-
l/(AR), where Ais the meancrossing rate of the thresholdu pcr year (i.e., the average number of data
points above the threshold u per year), and R is the meanrecurrence interval in years. We have

Prob(Y C yJ = 1- l/(AR) (2)

1- [1 + cyJa]l° = 1- I/@R) (3) ‘

yR = -a[l - @R)~/c (4)

v~ = yR+u (5)
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where V~is the R-year wind speed (e.g., VW=50-yearspeed) and u is the threshold used to estimate
c and a. For epochal sets consisting of the largest annual wind speeds, A= 1. Note that, given u, A,
c, R and VR,Eqs. 4 and 5 yield the parameter a inherent in the estimation of V~.

3. ANALYSIS OF LARGEST ANNUAL WIND SPEEDS

Table Al given in the Appendix shows estimated values of the tail length parameter, ?. The
estimateswere obtainedby applying the CME method to data samples taken from 115 N-year records
of obsexved largest annual wind speeds adjusted to a 10 m elevation above ground (17< N < 52).
Stations where strong winds am predominantlydue to hurricanes were not included in ‘TableAl. All
wind speeds are given by the Weather Service in terms of fastest miles (1 mph=0.44704 m/s). For
conveniencethese units havealso been used in this paper. In order to include only the strongest winds
in each set- the winds most likely to approachthe asymptoticcondition inherent in the (3PDapproach
- we used the CME estimator based for each record on a relatively high threshold. We chose this
threshold to be equal to the record’s medianwind speed, V-. All the CME-based results of Table Al
are based on this threshold. In our calculations for observed data a wind speed, V, was defined as
exceedingthe thresholdif V> VA, that is, the actual threshold is actually smaller (by an infinitesimal
amount) than the nominal threshold.

For the threshold Vti, the sample average number of exceedances was E(nJ =21, and
V4=50, SD(VA=6.5 (E and SD denote sample mean and standard deviation). The mean and
standard deviation of the estimatedvalues of c listed in Table A1 are:

E(C)=4L26, SD(d)=0.38.
We denote by V- and V-+ the speed precedingVA and the speed following V-, respectively, in
the set of ordered speeds of which V- is the median. Using a threshold V-, E(ncJ=24 and a
threshold V-+, E(nJ= 17, results not listed in Table Al yielded

E@=4L24, SD(6)=0.34
E(Q=-O.27, SD(t?)=O.48,

respectively. For lower thresholds E(6) was found to increase.
The followingresultswereobtainedfromMonte Carlo simulations.For 500 25-year sampleswith

mean exceedancerate A= 1 and 8 estimated by the CME method,
E(~)=-O.09, SD(6)=0.27 (populationwith Gumbel distribution)
E(i2)=-O.33,SD(Q=0.24 (populationwith reverse Weibull distr., -y=-l/c= 1/0,275).

A comparison between the results based on the observed data on the one hand and on the
simulated data on the other would suggest that a reverse Weibull distribution with shape parameter
~= 5 (c=-0,2) is a more appropriate model than the Gumbel distribution. (The Gumbel distribution
can be interpreted as the limit of a t%rnilyof three-paxameterextreme value distributions as the shape
parameter approaches infinity - see proof in Simiu et al, 1986)

Let us now hypothesize,nevertheless, that the Gumbel distribution is an appropriate universal
modelof extreme wind speeds, that is, that for every station the true tail length parameter is c=O. The
results of the Monte Carlo simulationsjust shown indicate a bhs of about -0.1 in the estimation of c,
so let us allow for a bias as large as -0.1 in estimating c. Using a binomial distribution model (with
mean n/2=57.5 and standard deviation (n)’n/2=5.36), one would expect that about half of the 115
estimatedvalues of c wouldbe below -0.1. Actually, 77 estimatedvalues (significantly more than half)
are below -O.1; this number is almost four standard deviations higher than the mean, arid would lead
to a rejection of the hypothesis that the Gumbel distribution is a universal model for the extreme
speeds. However, thk tentative conclusion may not be warranted. Indeed, each station may have a
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different true c, and the sample sizes for the various stationsdiffer. Insteadof the average E(d) for the
observed data, it would therefore be appropriate to consider a weighted average of c, where each
weight is equal to the inverse of the variance of the estimate of c. Standard deviations of these ,
estimates are listed in Table A1 and were obtained by the expression

[Z(n-i)]’n[Z(n-i)(yi-iIltfKXpt-~ ●(SIOpe)~]’n

sit) = ..—— (6)
(n-3)’n(l+slo-j)’ ● {[Z(n-i)]~(n-i)Xi9-[Z(n-i)XJ2}’n

where n is the numberof data in the set, x are the speeds (i= 12, ,..,n-l), and y, are CME values. The
weighted mezmof c, based on these standard deviations, is close to -0.1, and its standard deviation is
about 0.32. Note that the simplifying assumptionimplicit in ~. 6 that the errors in the estimation of
yi for various i’s are independent is not correct, and the standard deviations of the c estimates are
actually larger than those given by Eq. 6 by factors that pilot Monte Carlo simulations suggested can
be as high as two or even more. We conclude that owing to the small sample sizes we used, we do 4
not get a sufficientlygood estimate of the weighted average of 6, and the inference made earlier on
the basis of the binomial distribution cannot be relied upon with confidence.

A comparison between the tabulated values of CME-based estimated VN’Sand values of the
maximum speeds on record, V-, shows that the performance of the CME estimator of VRis very ,
good. We note, however, that a worse set of V~estimateswas obtained, where the CME method was
applied to &ta samplesin which identical speedswere madedistinct by addition of multiplesof 0.001.
Though the estimatesof c were not much affectedby this change, this sensitivity of the CME method
WIXXMSto cast some shadow upon its depen&bility.

The CME estimates of Vlm appear to be worse than those of V~: in some cases they differ
minimally fmm the estimatesof V~; in others they can be ridiculously large. We also show in Table
A1 wind speed estimates based on the Gumbel model. These were obtained by the probability plot
correlation coefficientmethod (PPCC). It is seen that estimatesof V~based on the Gumbel model are
comparable to those based on the CME method.

Table Al also lists CME-basedestimatedspeedswith mean return period la) y~, Vlww,
.

where the parameter a is based on the CME-based estimated value of V~, as indicated in the remark
following Eqs. 4 and 5, and on a specified c=-O.2.

Load Factoxs
LetRudenote the mean return period of the ultimate load. If the wind load predominates (i.e.,

no load combination need be considered), the wind load factor is

Table Al lists estimated values of 4 based on Eq. 7, where Vwwas based on the CME estimates of
VN,and VRU,correspondingto asymptotically large ~, was based on a parameter a estimated from V~
by using Eqs. 4 and 5, and the specified parameter c=-0.2 Depending upon the site<,the estimates of
# vary between 1.24 and 1.68. Their average is 4=1.42, as compared to 4=1.3 specified in the
ASCE Standard 7-93 and earlier versions thereof.

Structural Reliability Implications
Consider, for example, the Fresno, CA data set. Under the assumption that the Gumbel
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distributionbest fits the extremes, for ~= 10 years, Id and ld years, the estimated wind speeds are
59, 77 and 86 mph, respectively (Simiu et al, 1979). Under the assumption that the reverse Weibull
with ~=-1/c= 1/0.20 holds, they are 54, 59, and 60 mph, respectively. It is seen that the tail is
considerablyshorter for the reverse Weibull than for the Gumbel.

Failure probabilities for wind-sensitive structures d~ign~ in accordance with U.S. building
code requirements (or safety indi~ reflecting those probabilities) have been estimatedon the basis of
the Gumbel model. Ellingwood et al (1980) found such estimates to be substantially higher than for
other types of structures. Experience shows that the number of structural failu~s caused by non-
tomadic and non-hurricanewinds is vastly smaller than those e@nates would indicate. One possible
flaw of those probability estimates is in our opinion the fact that they are based on the Gumbel
distribution which, as suggested by our results, overestimates extreme winds corresponding to long
mean return periods.

The result that the upper tail of the extreme wind speed distribution is finite would invalidate
the notion that probabilitiesof failure of a structure subjectedonly to wind loading, conditionalon the
structural strength being sufficiently large, are always larger than zero: if the structural strength
correspondedto a wind speed larger than the length of the finite distribution tail, then the conditional
failure probability would be zero.

4. ANALYSES OF DATA BASED ON SETS OF LARGEST DAILY WIND SPEEDS

In this sectionwe first analyze data sets that reflect not only extreme winds muting at various
sites, but also ordinary winds. The analyses am intended to verify whether such sets can provide
informationon the parent population of the extremes. Next, we use a GPD-based approach to analyze
sets of data that exceed relatively high thresholds.

4.1 Data Selection
From sets of largest daily wind speeds we obtained data samples thati (1) are relatively large

so that sampliig errors are acceptablysmall, and (2) have reduced mutual dependenceamong the &&a.
The procedure for obtainingthe data is as follows: Partition the set of daily maximainto small periods
of size equal to or larger than the duration of typical storms in days. (A reasonablechoice of the length
of the period is eight days, but we also use sets based on four-day periods, and compare results of
analyses based on the two choices.) Pick the largest value in each period. If the maxima of two
adjacent periods are less than half a period apart, replace the smaller of the two maxima by the next
smaller value in the respectiveperiod which is at least half a period apart from the larger maximum.
A data set is thus obtained in which adjacent data are one period apart on the average and never less
than half a period apart. We show below the daily maxima at Boise, Idaho in the fmt six eightday
periods of the year 1965. The periods are separated by vertical bars. The &ta selected by the
procedurejust describedare in bold type. In the sixth period we underlined the period maximum(26),
discarded and replaced by the next largest value(18) because of the proximity to the larger maximum
(31) of the adjacent period.

23,32,35,20,26,24,24,14 I 13,16, 5,11,5,12,12,7 I 6, 6, 9, 9,11,12,25,26 I

15,12,12,7,15,12,29,10 i 7,10,15,20,20,17,24,31 I X,9,16, 14,18,16,14,12]

Our investigationattempts to ascertain whether sets of &ta selected by this procedure from a setof
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daily maxima could possibly constitute samples from the parent populations of the extremes. Even
though small correlations among data might subsist, we refer to a set obtained by the selection
procedure just described as an uneorrelated data set based on eight-day (four-day) intexvals or, for
short, an eight-day (four-day)interval set.

4.2 Analysis of Uncorrelated Data Sets
We considered 48 uneorrelated data sets based on eightday intervals, with length N ranging

from 15 to 26 years. First we analyzed separately the sets of spring, summer, fall and winter data
(seasonaldata analyses). Next, we analyzed the data sets unsegregatedby seasons. In both cases we
estimated the best-fitting dkributions (i.e., distributions with the largest PPCC) from among a set of
seven distributions or families of distributions (normal, double exponential, Iognorrnal, Gumbel,
Frdchet, Weibull, and reverse Weibull).

seasonal data acts
Our goal in performing the seasonal analyses was to attempt to fit to the spring, summer, fall

and winter data, respectively, cumulative distributions Pw(v), P,(v), P~v) and PW(V).Given these
distributions, the distribution for all the unemrelated data is

P(v) = PJv)P,(v)P@)Pw(v). (8)

We analyzed, for each season, 48 sets based on eightday intervals. According to our results, for the
spring, fall and winter reeords the best fitting distribution was predominantly reverse Weibull with
shape 4 <~ <30. However, 29 summer remrds were better fitted by Gumbel distributions than by the
reverse Weibull; the reverse Weibull (for the stations where it fitted the data better than the Gumbel
distribution), and the Gumbel distribution (for the other stations), yielded estimated speeds with mean
return period N years, VN,that in most eases underpredictedthe maximum speed reeorded during N
years, V-N. For summer reeords underpredictionswere 15 pereent or more for 16 sets, and 8 to 15
percent for 9 sets; there were only two overpredictions, both less than 8 percent. For spring reeords
there were 12 underpredictions by 8 to 18 pereent, and only three overpredictions, all less than 5
pereent; comparableresults were obtained for fall and winter. The results did not depend significantly
on whether eightday interval sets or fourday interval sets were used. From these and additional
analyses we eoneluded that (1) inferences from seasonaldata sets (obtained as was deseribed earlier
from samplesof largest daily data) do not provide a dependablebasis for estimating extremes, but are
likely to underestimatethe extreme speeds. In other words, those sets are not drawn from populations
underlyingthe extreme winds, but from mixed populations; (2) a similar mnclusion applies to the sets
consistingof all largest daily data for each sason; (3) for these reasons the approach embodied in Eq.
8 appears to be inapplicable if all the data of the 8day interval sets are considered.

Some researchers have indicated that the Weibull (as opposed to reverse Weibull) distribution
best fits the sets of largest daily data. However, our analysis showedthat the Weibulldistribution fitted
the seasonaldata best only for less than ten pereent of the sets.

Data sets unsegregated by seasons
The analysis of 48 sets based on eight-day intervals showed that the reverse Weibull (with

4 s7s22) was the best fitting distribution for 27 sets, and fitted the data better than the Gumbel
distribution for 41 sets. For 25 sets out of these41 sets, including 12 sets for which it was optimal,
the reverse Weibull underpredicted V-N by 8 to 25 percent. For the 48 sets there were only 4
overpredictions, all smaller than 5 pereent. In addition, the availability of largest annm data for
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periods N, rangingfmm 30 to 49 years allowedus to check the predictivecapability of models inferred
from sets based on eightday intervals by comparing the estimated speed with mean return period N,,
V~l, to the maximum speed recorded during an N1-yea,rperiod, v=~l, where 30< N1<49. The
underpredictionsof the N,-year speeds were more frequentand drastic than those of the N-year speeds.
We concludedthat estimateddistributions of data sets unsegregatedby seasons ~ toQaffected by the
bulk of the non-extremedata to yield satisfactoryestimatesof extremes. Each of our conclusions for
data segregatedby seasons were found to be valid for data unsegregated by seasons as well.

Numerical Experiments
The analyses reported in the preceding paragraph showed that even where ot,herdistributions

best fitted the data, the reverse Weibull was in most cases very close to being the best fitting
distribution, i.e., its PPCC differed only in the fourth or even fifth significant figure from the PPCC
of the best fitting distribution. We therefore reanalyzed the data based on eightday intervals by
assuming that the populations for all stations have a single reverse Weibtdl distribution with site-
dependentlocationand scale parameters. This was done by calculating, for each station, the PPCC’S
based on the assumptionthat the shap pammeterT is 123, , ,...50. For samples of &ta based on eight-
day intexvalsand unsegregatedby -ns the mean value of the PPCC’S, taken over all the stations,
was lugest for ~= 11, and the median PPCC was largest for =y= 13. This is an indication that a reverse
Weibullpopulationwithy= 12would explain the results of the analyses. To see whether this is in fact
the case, 48 samplesof 730 &ta points each (correspondingto an 18-yearrecord length based on 8day
interwds)were generated from reverse Weibull populationswith (1) 7=8, (2) T= 12, and (3) T= 16.
The number of simulated sets for which the best fitting reverse Weibull distribution had shape
-e~rs with 7= 12, 13s’Ys20, and 7>21 are shown in Table 1. Also shown in Table 1 are the
numbers of observed sets (average sample size 18 years) with T= 12, 13<7s20, and 7>21. The
results of Table 1 suggest that a reverse Weibulldistribution with T= 12 is an appropriate model for
the populationof extreme winds representing data based on 8day intervals unsegregatedby seasons,
except for the larger number of samples with ~>21 among the observed samples than among the
simulated samples. We interpret this larger number as reflecting the relatively frequent presence of
outliers among the observed samples. In our opinion this interpretation reinforces the point made
earlier that, becausewind speedpopulations which includeordinary speeds in addition to extremes are
mixed, samples taken from such populations are not a sound basis for inferences on extremes. It is
therefore neasary to “let the tails speak for themselves.” This is done by applying to the data the
GPD-based ‘peaksover threshold’ approach.

Table 1. Nurnbem of Sets Best Fitted by D@ributions with Various Values of T

Simulated sets, ~= 8 48 0 0
Simulated sets, ~= 12 27 17 4
Simulated sets, y= 16 8 24 16
observed sets 26 12 10

4.3 ‘Peaks over llweshold’ AnalysEs
In carrying out ‘peaksover threshold’ analyses it is tempting to use a relatively low threshold

in order to increase the number of data and thus reduce sampling errors. However, this introduces in
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the samples data that are not representative of the extremes and tend to bias the results. So that this
does not happen the thresholdbeing selected shouldbe as high as possible, without reducing the size
of the sample being analyzed to the point where the sampling errors become too large.

We selected the largestpossiblethresholdsubjectto the restriction that the resulting samplesize
of the exceedancesnot be smaller than 15. Basedon this selection, the averagenumber of exceedartces
for our 48 sets based on 8day intervalswas E(nJ= 16, and the average threshold was E(VJ=45, that
is, less than the average median, E(M)=50, for the largest yearly speed samples analyzed in Section
3. For these thresholdswe obtainedE@=-O.22 and SD(6)=0.44. The results were virtually the same
for the 48 sets based on 4day intends. These results would appear to lend support to the tentative
conclusion of Section 3 that the extreme winds are described by a reverse Weibull distribution with
shape parameter -y=5, or perhaps somewhat lwger, rather than by a Gumbel distribution. However,
the weighted mean of the estimatedc’s, obtain~ as was shown for the results of Table Al, was close
to zero. In addition, there were about as many estimatedc’s larger than -0.1 as there were smaller than
-0.1. These results would suggestthat the Gumbeldistribution is appropriate. However, given the very
wide confidence bands for our results, we conclude that no statement on whether the Gumbel or the
reverse Weibull distribution is more appropriate can be made on the basis of this analysis.

In principle, the approach inherent in Eq. 8 maybe based on ‘peaksover threshold’ analyses.
However, given that the records at our disposal are relatively short and the number of data exceeding
a sufficientlyhigh threshold for each of the seasonswas judged to be too small, no attempt to perform
‘peaksover threshold’ seasonalanalyses was made in tlis work.

5. CONCLUSIONS

It is currently assumed in engineering loading models that non-hurricane and non-tornadic
extreme wind speeds, regardless of their direction, are described by the Gumbel distribution (which
corresponds to a shape parameter y =-l/c approachinginfinity). The GumbeIdistribution has infinite
upper tail. The objective of this paper was to gain insights into the question of whether extreme wind
speedscan be describedby an extremevalue distributionwith limited upper tail, that is, by the reverse
Weibull distribution.

We used in our analysesobserveddata, consistingof (a) sets of largest annual wind speeds, and
(b) sets of largest daily wind speeds from which we extmcted subsets suitable for extreme value
analysis; and simulateddata. Our results appear to suggest that extreme winds are better described by
the reverse Weibull distribution than by the Gumbel distribution. However, given the small sample
sizes used in our analyses, the superiority of one of the distributions over the other cannot be affirmed
with confidence.

The tentative assumption that the extreme wind distributions are reverse Weibull, with shape
parameter-y=5 (GPD tail length parameter c=-O.2) and sitedependent locationand scale parameters,
yieldswind load factorswith an averagevalued= 1.4. This assumption, if confirmed, would invalkiate
earlier approaches to the estimationof the reliability of wind-sensitive structures, which depend on an
infinite-tailed model of extreme wind speeds and therefore yield unrealistically high failure
probabilities.

The ‘peaks over threshold’ analyses were based in this paper on the Cumulative Mean
Exceedance(CME) approach, which appears to be extremely sensitive to whether identicd values of
the variate in a set are left identical or modified by the addition to each of a different number much
smallerthan unity, Future work aimedat veri~ing the tentativeconclusions of this paper wilI therefore
includeanalyses based on differentestimation procedures, including the de Haan procedure (Dekkers
et al, 1989). In addition, we plan to perform analyses based on larger &ta sets, andmore elaborate
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Monte Carlo simulations, in which the sets of samplesgeneratedby simulationwill have the same sizes
as the observed data sets being analyzed, rather than havinga constant size, Finally, investigationsare
envisaged into the possibility that the shape parameter of the extreme wind speed distributions is site-
dependent. This would be a departure from current practice, in which it is assumed that extreme winds
are described by an extreme value distribution with universaJshape pammeter (that is, by the Gumbel
distribution, which corresponds to a GPD tail length parameterc = O),and sitedependent locationand
scale parameters.

6.
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APPENDIX

Table Al. Results of Analyses of Sets of Largest Annual Data

Statbo

(1)

N V- Vd

(2) (3) (4)

%x

(5)

1. BIRMINGHAM, AL
2. MONTGOMERY, AL

3. TUCSON, AZ
4. YUMA, AZ
5. FORT SMITH, AR

6. LITTLE ROCK, AR

7. FRESNO, CA

8. RED BLUFF, CA

9. SACRAMENTO, CA
10. SAN DIEGO, CA
11. DENVER, CO
12. GRAND JUNCTION, CO
13. PUEBLO, CO

14. HARTFORD, CT

15. WASHINGTON, DC

16. ATLANTA, GA

17. MACON, GA

18. BOISE, ID

19. POCATELLO, ID

20. CHICAGO MIDWAY, IL

21. MOLINE, IL

22. PEORJA, IL
23. SPRINGFIELD, IL
24. EVANSVILLE, IN
25. FORT WAYNE, IN

26. INDIANAPOLIS, IN

27. BURLINGTON, 1A

28. DES MOINES, IA

29. SIOUX CITY, 1A

30. CONCORDIA, KS

31. DODGE CITY, KS

32. TOPEKA, KS

33. WICHITA, KS

34. LOUISVILLE, KY

35. ~RTLAND, ME

36. BALTIMORE, MD
37. BOSTON, MA
38. NANTUCKET, MA

39. DETROIT, Ml
40. GRAND RAPIDS, Ml

41. LANSING, Ml

42. SAULT STE MARIE, MI

43. DULUTH, MN
44. MINNEAPOLIS, MN

45. JACKSON, MS
46. COLUMBLA,MO
47. KANSAS CITY, MO

48. sT.LOUIS, MO

34 62 44

34 n 45

39 78 50

39. 65 46

31 64 45

397244

37 47 34

42 67 49

39 63 43
48 61 35
33 61 48
33 70 52
43 79 61

44 67 43

39 66 47

42 76 46

33 64 45

48 62 47

4872s3

376346

44 72 S2
42 72 50

32 71 54
44 61 47
466952

36 93 53

Z7255
37 80 56

4688s7

20 74 S6

41 n 59

34 79 54
41 89 57

39 66 49
45 73 46

39 71 54
50 85 ’54
23 71 55

466849

29 67 47

38 67 51
47 67 46

36 70 49
42 82 46

296444
35 65 .s1

51 75 49
216646

22
17

21

20

17

21

21

25
20
27
17
17
25
28

24

22

17

24

25

22

25
22
16
23
23
18

13
19

24

11

22

17

22

21
23
20
26
14

25
15

21

24

19
27

16
20

31
14

-0.495

0.442

0.187
-0.701

-0,798

-0.395
4.204

-0.751
-0.668
0.384

-0.265
0.104

-o,4n

-0.238

-0.325

-0.034

-0.271

-0.099

0.019

-0.128

-0.665

-0.302

4.199
-0.130
-0.163

0.023

-1,751

0,042

0.063

-0.933

4.709

-0.180

0.218

-0.085

-0.283
-0.274

-0.126
-1.402

4J.207
4.930

-0.646

-0.351

-0,310

-0.023

-0.353
-0.103
4.116
0.035

I V* Iv-l v’- I
sol(t) Gum.cm CUE CME (hllll. C =-20

0) (8) (9) (lo) (11) (12) (13)

0.084 646265 69 104 81

0.022 66 65 72 1071 117 95

0.086 76 71 79 273 121 103

0.056 65 66 66 68 116 83

0.158 63 64 64 65 113 80

0.070 727173 83 136 97

0.036 47464859n59

0.115 67 69 67 68 1[14 81
0. lM 62 &l 62 65 114 78
0.022 56 50 57 584 85 75
0.112 606161699372

0.065 67 66 70 146 103 86
0.060 808180 85 126 95

0.028 676468 84 109 87

0.055 676568 77m84

0.030 74 n 76 134 131 101

0.073646566 79 118 84

0.068 626162849275

0.157 75 71 75 132 113 94

0.028 636164869779

0.082 n7573 75 124 90

0.075 70 72 71 82 KZ2 89

0.118 68 69 69 83 110 83

0.106 63 63 63 82 103 77

0.063 69 70 70 8s 110 85

0.064 81 81 85 171 151 113

0.515 69 76 69 69 140 80

0.034 79 n 81 155 133 102

0JM5 85 80 85 180 132 110

0.188 73 76 74 75 145 89

0.048 n7572 73 114 83

0.160 71 74 73 91 128 90

0.056 83 80 86 325 134 110

0.055 63 65 64 87 107 n

0.088 737073 90 122 97

0.078 70 71 71 81 116 85

0.039 848184 119 139 109
0.217 71 73 72 72 128 85

0.091 67 68 67 81 111 82

0.128 69 71 70 71 136 89

0.063 686968 71 110 83

0.059 656765 74 113 82

0.033 69 70 70 81 122 88

0.048 79 n 81 149 127 108

0.073 646266 75 109 84
0.075 66 66 67 89 109 81

0.038 74 72 74 104 120 94

0.075 64 62 70 135 111 89

1.47
1.56

1.54

1.44

1.43

1.59

1.42
1.38
1.45
1.57
1.30
1.37
1.34

1.s4

1.44

1.59

1.46

1.35

1.43

1.41

1.41

1.43
1.32
1.36
1.37
1.56

1.28

1.4s
1.49

1.35

1.25

1.38

1.49
1.34

1.55
1.34

1.52
1.33

1.38
1.47

1.36

1.43

1.44

1.65

1.48

1.35
1.49

1.51

78



I v. [v~l v,- I

station NV-V- ~ c sol(@)GIIM.CME CME CIKE Gum. c=-.2O +

(1) (2) (3) (4) (5) (6) m (8) (9) (10 (11) (12) (13) (14)

49.

59.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
n.
78.

79.

80.
81.
82.
83.

84.

85.

86.

87.

88.

89.
90.

91.

92.
93.
94.
95.

%.

97.
98.

99.

100.

SPRJNGPIELD, MO

BILLINGS, MT

GREAT FALLS, MT

HAVRE, MT

HELENA, MT
MISSOULA, MT
NORTH PLATTE, NE
OMAHA, NE
VALENTINE, NE

ELY, NV

LAS VEGAS, NV

RENo, Nv

WINNEMUCCA, NV

CONCORD, NH

ALBUQUERQUE, NM

ROSWELL, NM

ALBANY, NY
BINGHAMTON, NY
BUFFALO, NY
LA GUARDIA, NY
ROCHESTER, NY
SYRACUSE, NY

CHARLOITE, NC

GREENSBORO, NC

BISMARCK, ND

FARGO, ND

WILLISTON, ND
CLEVELAND, OH

COLUMBUS, OH

DAYTON, OH

TOLEDO, OH
OKLAHOMA CITY, OK
TULSA, OK
PORTLAND, OR

HARRISBURG, PA

PHILADELPHIA, PA

PITTSBURGH, PA

SCRANTON , PA

BLOCK ISLAND, RI

GREENVILLE, SC

HURON, SD
RAPID ClTV, SD

CHATTANOOGA, TN
KNOXVILLE, TN
MEMPHIS, TN
NASHVILLE, TN
ABILENE, TX
AMARILLO, TX

AUSTIN, TX
DALLAS, TX

EL PASO, TX

SAN ANTONIO, TX

44 71 49 22

49 84 58 26

44 75 59 24

27 fi 57 14

48715525
43 71 47 22

31 74 61 16

51 104 50 29
27 74 61 1S
49 70 51 28

20 70 55 12

45 n 55 24

38 63 47 21

46684123

52 85 56 26

36 82 57 18
46684629

35654818
44 79 52 22
33 73 57 17
45665223
45 67 51 23

29 65 42 17

50 67 41 25

40695820

45 100 57 2s

18 69 56 9
35 69 53 19

30 61 49 15
41 7252 24,

45 82 48 24

30 69 53 15
35 68 49 18

3a 88 49 19
38 64 45 19

33 62 47 21

18 60 47 11

33 57 44 17

31866016

43724622

49 79 59 26
43 70 62 22

35 76 46 18
33 66 50 18
21 61 45 11
34 70 45 17
36 100 54 19

34 81 62 17

37 58 45 19
32 67 48 17

32 67 55 17

36 80 46 19

-0.127
-0.051

-0.400

-0.229

41.241

-0.157
-0.709
0.294

-0.574

-Q.191

4.938

-0.463

-1.102
-0.040

0.139

0.088
4.086

4.370
0.463
0.314

+.717
0.014

-0.481

-0.089

-0.582

0.252

-0.469
-0.224

-1.236

-0.170

0.207

-0.135
0.019
0.268

-0.599

-0.507

-0.591

-0.387

-0.182

-0.483

-0.447

-0.341
-0.336

0.007
-0.370

-0.178
0.550
0.201

-0.189
-0.233

-0.187

0.236

79

0.068
0.031

0.078

0.227

0.114
0.050

0.044
0.054
0.120

0.023
0.362

0.053

0.071

0.038

0.U23

0.119
0.081

0.081
0.050
0.032
0.094
0.089

0.244

0.073

0.145

0.032

0.127
0.080

0.106

0.072

0.050
0.081
0.107
0.077
0.087

0.094

0.132

0.092

0,120

0.069

0.059
0.096

0.066
0.042
0.369
0.092
0.047

0.082
0.057
0.043

0.103

0.041

68 67
84 81

74 78

n 76

70 71
71 65

74 n
92 81
74 78

70 68

68 70

n 78

63 67

66 63

79 78

81 81
6664

6466
73 69
71 71
66 69

6665

65 62

62 62

69 72

93 86

6868
68 69

6064

74 72

76 n

67 67
6365
80 75
6365

63ti

61 60

56 57
82 82

69 75

80 82
71 73

76 73
6665
57 58
67 66
79 78
n 78

57 58
6564

68 67

70 68

69

84

74

80
70
72
75
91

76

70
69

n

64

66

78

84

67
65
74
74
66
66
67

62

69

95

71

69

60

75

78
69
65
85
64

64

63

57

84

70

80
72

78
68

59
70
85
79

58
67

69

73

93 111

130 132

80 125

97 135

81 111
97 105
76 123

640 145
78 130
87 107
69 121

83 129

64 114

116 111

195 124

190 145
95 103

72 115
1049 109
344 113

67 106
105 100
73 112

94 109

71 107

484 151

75 116

81 111

60 106

97 121

308 125
89 105

106 109
503 138

67 114

67 105

65 102

62 89

107 138
76 14J

86 Im

76 lLW
93 141

111 109
65 103
94 119

2491 141
214 124

69 91
81 107

82 99

328 123

86

l(m

87

99

83
92
87

125

88
86
80

%

77

89

98

83
80
94
89
78
79

87
81

79

127

84

82

70

94

103
84

79
116

80
n

75

68

105

90

98
80

105
83
71

91
111

95
68
83

81

%

1.42

1.45

1.29

1.41

1.31
1.50

1.26
1.68

1.27

1.39
1.28

1.41

1.37

1.58

1.41
1.48

1.45

1.38
1.45
1.33
“1.30
1.33

1.55

1.51

1.23

l.a

1.31

1.33

1.26

1.45

1.57
1.35
1.35
1.64
1.42

1.38

1.36

1.32

1.42

1.50

1.38

1.18
1.61
1.38
1.34
1.s3
1.54
1.32

1.31
1.41

1.28

1.55



I VN Ivml v,- I

Stdon N V- Vd n= t SW Gum.CME CME CM.E Gum. e=-.20 +

(1) (2) (3) (4) (5) (6) (7) (8) (9) (lo) (11) (12) (13) (14)

101. SALT LAKE CITY, UT 46 69 49 28 -0.333 0.038 70 69 70 80 113 88 1.44

102. BURLING’IX)N, VT 40664423-0.2320.09366 6367 84 107 86 1.51
103. LVNCHBURG, VA 44 53 39 22 4.750 0.154 52 S652539463 1.37
104. RICHMOND, VA 33 61 42 20 0.192 0.058 59 56 63 204 95 79 1.48
105. NORTH HEAD, WA 41 104 67 28 -0.250 0.055 105 % 106 130 158 136 1.55
106. QUILLAYUTE, WA 21 45 35 12 4.184 0.018 454447587257 1.37
107. SEAITLE, WA 20 59 43 11 0.027 0.069 56 56 62 112 97 77 1.44
108. SFOKANE, WA 476548240.0,280.0.4064 6465 111 101 79 1.37

IW. TATOOSHISLAND, WA 54 86 66 27 -0.290 0.045 868586 98 128 104 1.34
110. GREEN BAY, WI 36 103 54 18 0.431 0.089 85 82 92 1408 153 126 1.63
111. MADISON, WI 41 75 48 21 -0.516 0.058 75 7S 76 82 134 100 1.54
112. MILWAUKEE, WI 42 68 54 21 -0.423 0.059 67 70 67 72 lW 79 1.29

113. CHEYENNE, WY 46 73 61 24 4.476 0.051 74 76 74 77 113 85 1.24

114. LANDER, WY 42 80 58 21 -0.621 0.067 n83n 80 142 94 1.35

115. SHERIDAN, WY 44 82 61 24 0.125 0.073 82 80 83 184 128 101 1.38

MEAN 38.1 71.950 .420.5 -0.2S7(unwcightcd) 1.42
SD 8.210.5 6.3 4.5 0.384 (unwcighted) 0.10

Key

N, V_, ~: Sample size, maximum observed speed, number of exceedences, respectively.
e, Sd(t!): Estimatedc, standard deviation of L
Col. 8,9: Estimated N-yr wind based on Gumbel model and CME method (i?from Co]. 6).
COI. 10 Estimated 50-yr wind based on CME method (d from Col. 6).
Col. 11,12,13: Estimated 100,000-yr wind based on CME method (~ from Col. 6), Gumbel

,model,CME method (c=-0.20), respectively.
COL14: Load factor, +, based on c=-O.20.

80


